Answer:
Option B
Explanation:
According to the question,
Magnetic field at the centre of circular coil is given by
$B_{centre}=\frac{\mu_{0}Ni}{2R}$ ...........(i)
$B_{axis}=\frac{\mu_{0}}{4\pi}\frac{2\pi Ni R^{2}}{(x^{2}+R^{2})^{3/2}}$
$\frac{B}{8}=\frac{\mu_{0} Ni R^{2}}{2(x^{2}+R^{2})^{3/2}}$
From Eq.(i) , we get
$\frac{\mu_{0} Ni}{8\times 2R}=\frac{\mu_{0} Ni R^{2}}{2(x^{2}+R^{2})^{3/2}}$
$\frac{1}{8 R}=\frac{1}{(x^{2}+R^{2})^{3/2}}$
$\frac{1}{8 R^{3}}=\frac{1}{(x^{2}+R^{2})^{3/2}}$
$8 R^{3}=(x^{2}+R^{2})^{3/2}$ (on taking cube root)
$2 R^{}=(x^{2}+R^{2})^{1/2}$ ( on taking square root)
$4 R^{2}=(x^{2}+R^{2})^{}$
$4 R^{2}-R^{2}=x^{2}$
$3 R^{2}=x^{2}$
x= $R\sqrt{3}$